Forecasting Inflation: Autoregressive Integrated Moving Average Model
نویسندگان
چکیده
This study compares the forecasting performance of various Autoregressive integrated moving average (ARIMA) models by using time series data. Primarily, The Box-Jenkins approach is considered here for forecasting. For empirical analysis, we used CPI as a proxy for inflation and employed quarterly data from 1970 to 2006 for Pakistan. The study classified two important models for forecasting out of many existing by taking into account various initial steps such as identification, the order of integration and test for comparison. However, later model 2 turn out to be a better model than model 1 after considering forecasted errors and the number of comparative statistics.
منابع مشابه
Inflation, Forecast Intervals and Long Memory Regression Models
We examine recursive out-of-sample forecasting of monthly postwar U.S. core inflation and log price levels. We use the autoregressive fractionally integrated moving average model with explanatory variables (ARFIMAX). Our analysis suggests a significant explanatory power of leading indicators associated with macroeconomic activity and monetary conditions for forecasting horizons up to two years....
متن کاملForecasting irish inflation using ARIMA models
This paper outlines the practical steps which need to be undertaken to use autoregressive integrated moving average (ARIMA) time series models for forecasting Irish inflation. A framework for ARIMA forecasting is drawn up. It considers two alternative approaches to the issue of identifying ARIMA models the Box Jenkins approach and the objective penalty function methods. The emphasis is on forec...
متن کامل3/RT/98 - Forecasting Irish Inflation Using ARIMA Models
This paper outlines the practical steps which need to be undertaken to use autoregressive integrated moving average (ARIMA) time series models for forecasting Irish inflation. A framework for ARIMA forecasting is drawn up. It considers two alternative approaches to the issue of identifying ARIMA models the Box Jenkins approach and the objective penalty function methods. The emphasis is on forec...
متن کاملInference and Forecasting for Fractional Autoregressive Integrated Moving Average Models, with an application to US and UK inflation
متن کامل
AN EXTENDED FUZZY ARTIFICIAL NEURAL NETWORKS MODEL FOR TIME SERIES FORECASTING
Improving time series forecastingaccuracy is an important yet often difficult task.Both theoretical and empirical findings haveindicated that integration of several models is an effectiveway to improve predictive performance, especiallywhen the models in combination are quite different. In this paper,a model of the hybrid artificial neural networks andfuzzy model is proposed for time series for...
متن کامل